Ecosystem Structure & Function PPT Notes

Name:_____

Part 1 - Interactions

I. Ecosystem Background

Ecology studies interactions between organisms and their environment.

Environmental science adds the human component.

II. Ecosystem Components:

1. Ecosystem: A community of _____

and the _____ they inhabit.

2. Organization:

3. ABIOTIC FACTOR =

BIOTIC FACTOR =

a. Brain Break: classify each of the following words as abiotic or biotic.

pH humidity light intensity precipitation wind speed symbiotes decomposing leaves consumer parasite temperature nutrients competitors predators salinity

soil structure detritivore producers moisture thorns dissolved oxygen

b. Abiotic Interactions

i. Major factors in terrestrial and aquatic ecosystems

 Sunlight Temperature Precipitation 	 Mineral availability Temperature pH light depth
•	water currents
•	•

ii. Abiotic factors affect animal and plant species, but also ______ and

with time themselves	
•	Ex: Temperature depends upon: • Solar radiation, wind speed, time of year, day, altitude, and aspect
	 Temperature affects: •
	 Changes in temperature affect: •

c. <u>Biotic Interactions</u>

	•	•	
	•	•	
	•	•	
	•	•	
	i. <u>Competition: Interspecific or Intraspecific</u> <u>Interspecific</u> competition is between members of a food, light (niches), while <u>intraspecific</u> is between		for space,
	for space, food, or mates.		
d.	Significance of Abiotic & Biotic Factors: both can act as factors prevent individuals or populations from growing	s	These

i. Examples

Part 2 - Energy Flow

- I. Structure based on feeding relationship
- a. Each organism in a food chain represents a _____

b. Limitations:

c. Food Chain Clarification:

- i. many producers are invisible to naked eye:
- ii. humans ______ always occupy the top spot of the food chain
- iii. _____ interconnect all trophic levels and _____ nutrients
- iv. food chains are an _____ ____ ____
- v. role of ______ is to ______ energy
- vi. role of ______ is to ______ energy

d. Transfer v. Transform

- Transformations: ______ of energy or a ______
 (from gas, liquid, solid)
- Transfer: ______ of same form of energy or type of chemical
- Practice
- 1. Water moves dead leaves downstream...
- 2. CO2 is used to create glucose...
- 3. Water evaporates from stomata on a hot day
- 4. Detritivores break down dead flesh

II. Ecosystem Function

a. Feeding relationships allow energy to be transformed, transferre	d, or So the
function of these feeding relationships is to	ecosystems with energy
and	

	yntnesis (UX pg. 31)	
	i is trai	nsformed into
	(C ₆ H ₁₂ O ₆) by photosynthe	esis
c. Respira	ition (pg. 31)	
	i (glucose) is	FRANSFERED by consumption
	ii. Chemical energy is	when converted into a usable
	form by the consumers during respiration	on (mostly given off as heat because
	process is inefficient)	
III. Energy Budget 1. Big Picture: al	chains begin with	Energy lost as heat or
waste at each ster	o (average is%)	
2. Details:	in . 0/ of incoming color rediction is stored in	
only	% of sunlight energy is stored as bioma	plant's chloroplasts (0.06%). Of that %
b. Most end a.	2 of sunlight energy is stored as bioma ergy is lost as heat each step EX: Sun \rightarrow chloroplast (plant)	plant's chloroplasts (0.06%). Of that % ass. \rightarrow stored sugars
b. Most end a. c. Laws of	 % of sunlight energy is stored as bioma % of sunlight energy is stored as bioma ergy is lost as heat each step EX: Sun → chloroplast (plant) thermodynamics 1st Law: Energy can neither be 	plant's chloroplasts (0.06%). Of that % ass. → stored sugars or, it can
b. Most end a. c. Laws of	 % of sunlight energy is stored as bioma ergy is lost as heat each step EX: Sun → chloroplast (plant) thermodynamics 1st Law: Energy can neither be 	plant's chloroplasts (0.06%). Of that % ass. → stored sugars or, it can

Brain Break:

• Independent Write: Thinking about the laws of thermodynamics. Justify if your diet is environmentally responsible and defend.

• Share: Each person introduces themselves and share what they think.

3. Implications of Energy Budget

a. Models of feeding relationships - _____

i. Pyramid of Numbers

- Total number of ______ for each trophic level
- Length of each bar gives relative proportion
- Helpful in comparing populations

_____ (seasonal, short

term)

- ii. Pyramid of Biomass
- Total dry mass for

_____ (g m²)

- Can be for a _____, _____, or trophic level
- Does not bias based on size of organism like pyramid of numbers

* Know limitation of all pyramids in OX and SBS.

• Brain Break: How does the structure of these pyramid affect lower and higher trophic level consumers?